
Comments	and	
Discussion:

The	Small-x	Session



• How under control are small-x calculations, especially in the “hybrid factorization” 
approach [inclusive and exclusive]? 

• It seems like a full set of NLO corrections are now available (impact factors + 
evolution equations + solutions), but is an NLO calculation sufficient to ensure positivity 
of the cross-section? 

•Is this a symptom that we need to go to NNLO in order to have a reliable description 
of low-pT particle production in pA collisions? 

•Or is there a defensible way to “bootstrap” the NLO calculation?

CGC	/	Small-x	
at	NLO:

Edmond Iancu 
Particle production in pA collisions beyond leading orderNLO BK evolution

“Negative growth” of the dipole scattering amplitude
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Lappi, Mäntysaari, arXiv:1502.02400

Not really a surprise

similar problems for NLO BFKL
large transverse logarithms
collinear resummations
Mellin representation

(Salam, Ciafaloni, Colferai, Stasto,
98-03; Altarelli, Ball, Forte, 00-03)

Collinear improvement for NLO BK (transverse coordinates)
(E.I., J. Madrigal, A. Mueller, G. Soyez, and D. Triantafyllopoulos, 2015)

Evolution becomes stable with promising phenomenology
excellents fits to DIS (Iancu et al, 2015; Albacete, 2015)
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“Negative growth” of the dipole 
scattering amplitude

NLO BK evolution

“Negative growth” of the dipole scattering amplitude

Lappi, Mäntysaari, arXiv:1601.06598

Not really a surprise

similar problems for NLO BFKL
large transverse logarithms
collinear resummations
Mellin representation

(Salam, Ciafaloni, Colferai, Stasto,
98-03; Altarelli, Ball, Forte, 00-03)

Collinear improvement for NLO BK (transverse coordinates)
(E.I., J. Madrigal, A. Mueller, G. Soyez, and D. Triantafyllopoulos, 2015)

Evolution becomes stable with promising phenomenology

excellents fits to DIS (Iancu et al, 2015; Albacete, 2015)
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Collinear improvement of NLO BK

Particle production in d+Au collisions (RHIC)

Very good agreement at low p? , ... but negative at larger p? /
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Stasto, Xiao, and Zaslavsky, arXiv:1307.4057

Is this a real problem ?

“small-x resummations do not
apply at large p?”

but p? ⇠ Q

s

is not that large !

Likely related to the rapidity
subtraction in NLO impact factor
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Negative at large pT

Rapidity subtraction in NLO 
impact factor

Particle production in d+Au collisions (RHIC)

Very good agreement at low p? , ... but negative at larger p? /
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Is this a real problem ?

“small-x resummations do not
apply at large p?”

but p? ⇠ Q

s

is not that large !

Likely related to the rapidity
subtraction in NLO impact factor

Various proposals which alleviate the problem (pushed to higher p?)
Kang, Vitev, and Xing, arXiv:1403.5221
Altinoluk, Armesto, Beuf, Kovner, and Lublinsky, arXiv:1411.2869
Ducloué, Lappi, and Zhu, arXiv:1604.00225
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Particle production in d+Au collisions (RHIC)

Very good agreement at low p? , ... but negative at larger p? /
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Is this a real problem ?

“small-x resummations do not
apply at large p?”

but p? ⇠ Q

s

is not that large !

Likely related to the rapidity
subtraction in NLO impact factor

A reorganization of the perturbative expansion which avoids the
rapidity subtraction (E.I., A. Mueller and D. Triantafyllopoulos, 2016)

Sensible numerical results (positive cross-section)... and a new puzzle
(Ducloué, Lappi, and Zhu, arXiv:1703.04962)
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Towards NLO factorization in pA

The first gluon contributes both to the evolution (when x ⌧ 1) and to the
NLO impact factor (generic x) : How to avoid over counting ?

k?-factorization : use a ‘rapidity subtraction’

the method used by Chirilli, Xiao, and Yuan (arXiv:1203.6139)
leads to a negative cross-section at semi-hard k?

Our proposal (E.I., A. Mueller and D. Triantafyllopoulos, arXiv:1608.05293)

separate the first gluon emission from the evolution and compute it
with the exact kinematics

The integral representation of the BK equation is useful in that sense
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Rapidity subtraction in kT 
factorization (G. A. Chirilli, 
B.-W. Xiao, F. Yuan)



CGC	/	Small-x:		
Encountering	
Confinement
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FIG. 4: Graphs of the scattering amplitude as a function of the dipole size at various constant rapidities for fixed impact
parameter b = 1.0 and angle cos(θ) = 0. Solid lines are for the LO kernel and the dashed lines correspond to the Bessel kernel.
The initial distribution is equivalent for both kernels and is represented by the dotted-dashed line. On the left graph each line
represents a change in two units of rapidity to a maximum of ten and on the right graph each line represents a change in ten
units of rapidity to a maximum of fifty.
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FIG. 5: Graph of scattering amplitude as a function of impact parameter for fixed dipole size r = 1.0. The solution with the
case of the LO kernel is plotted as a solid line and with the modified kernel (13) as a dotted line. The dotted-dashed line on
the left is the initial condition. Each line thereafter represents an increase in rapidity of ten units to a maximum of fifty. Right
plot: the same but for the dipole size r = 0.11 and in logarithmic scale for the amplitude.

B. Impact parameter profile of the scattering amplitude

Dependence of the dipole amplitude on the impact parameter is illustrated in Fig. 5. The leftmost dashed-dotted
line is the initial condition Eq. 5 which has a very steep profile in impact parameter. The evolution of the scattering
amplitude towards large values of impact parameter follows the diffusion of large dipoles. The speed of this evolution
can be extracted numerically and is determined by the expansion of the black disc radius. We will discuss this quantity
in detail in the next section.

Evolution in impact parameter shows a marked change in profile from the steeply falling exponential in the initial
condition. This is better illustrated in right plot in Fig. 5 where we replot the impact parameter using the logarithmic
scale in scattering amplitude. The profile changes from the exponential to a power tail at small scattering amplitudes.
This can be seen as an ’ankle’ in the curves of constant rapidity. The origin of this power-like tail was discussed
in detail in Ref. [41]. These power tails are also present in the modified kernel. In the latter case however there
is a slower evolution of the profile towards the large values of impact parameters. There also exists a nontrivial
angular dependence which is most prominent in the cases of large dipole size or impact parameter but for very specific
configurations. In the case when the dipole size is much smaller or much larger than the impact parameter the solution
does not depend much on the spatial orientation of the dipoles. On the other hand, for the case when the dipole size

• Saturation for small impact parameters
• No saturation for large impact parameters (system is still dilute)
• Initial impact parameter profile is not preserved
• Power tail in b is generated, this is due to perturbative evolution and 

lack of confinement effect.

GM-type initial 
condition

BK-evolved 
impact parameter 

profile

(arbitrary units)

Berger,AS

27

•What is the status of impact parameter dependence 
in the dipole model? 

•Have we hit a real theoretical wall related to 
confinement? 

•Does the “effective gluon mass” or hard IR cutoff 
work adequately? Where / does it fail? 

• Are large dipole configurations a real problem?

At    x0=0.01  use Glauber-Mueller formula:

with parameters from Kowalski, Motyka, Watt

Cutoff:

Need to implement the cutoff to regulate large dipole sizes, 
mimic confinement:

m ' 1/
p

2BG ⇠ 350 MeV
p

2BG ' 2.83 GeV�1

Confinement effects
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A. Including mass parameters into the evolution

With the inclusion of impact parameter in the BK evolution equation there is a drop of the scattering amplitude
at large dipole sizes. This provides a new region of contribution to the evolution at these large dipole sizes where the
amplitude transistions from full saturation to zero. At these large dipole sizes the specific regularization schemes of
the running coupling play a very large role, this was not a problem without impact parameter because the amplitude
was fully saturated at all large dipole sizes. Full saturation leads to a zero contribution from the BK equation so in
effect the equation without impact parameter dependence had a self-regularizing feature. Without this feature we are
forced to put in a mass scale in order to cut the contribution of the kernel for large dipole sizes. We use not only
the LO kernel but the modified kernel with these cuts and impliment them in various ways both with and without
running coupling.

The difficulty in implimenting a massive cut here is that how to do this is very unclear. All prescriptions for the
mass parameter are put in by hand in order to give the desired effect of cutting the non-perturbative dipoles, not
from a rigorous calculation. It is well known that confininemnt effects have to play a part in these large dipoles but
it is entirely unclear how to transition to this non-perturbative regime or at what scale this occurs at. From the fits
to the data in Sec: IV the mass used here does not seem to be a pion mass or a gluon mass GLUON MASS REFS.
The scale we find is consistent with other works REFS FOR 350MEV and represents some other scale here which is
still unclear.

1. LO Kernel

Massive cuts have been implimented in the LO kernel in three different ways. Here we present the various methods
of cutting the kernel; the effect that each different cut has on the evolution will be discussed in the next section.

The first method that was used is a hard cutoff on the daughter dipoles x02 and x12 where the kernel is zero if
either of these dipole sizes exceed a scale 1

m . Here Nc is the number of colors.

K = dx2
02ᾱs

x2
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02x

2
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1
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− x2

02)Θ(
1

m2
− x2

12) (11)

The LO kernel can be expanded into three terms, one of 1
x2
02

as well as 1
x2
12

and a cross term. Each of these three
contributions to the kernel can have a cut placed on them seperately corresponding to which dipole is present in each
term. Cutting the kernel like this gives additional contributions from regions where x2

02 > 1
m2 yet x2

12 < 1
m2 , making

this prescription a softer cut than the previous (11) as these contributions are non-existant in the previous ’full theta’
cut prescription.

K = dx2
02ᾱs

[
1

x2
02

Θ(
1

m2
− x2

02) +
1

x2
12

Θ(
1

m2
− x2

12) − 2
x02 · x12

x2
02x

2
12

Θ(
1

m2
− x2

02)Θ(
1

m2
− x2

12)
]

(12)

In the same spirit as the previous method of cutting the equation off the kernel can be seperated so the dipole
contributions can be killed off individually, but instead of using a step function bessel functions can be employed.
The substitution 1

x2
02

→ m2K2
1 (mx02) where K1 is the first order modified bessel function of the second kind. This

provides a much smoother cutoff and reduces to the LO Kernel (9) for small dipole sizes.

K = dx2
02ᾱsm

2

[
K2

1 (mx2
02) + K2

1(mx2
12) − 2K1(mx2

02)K1(mx2
12)

x02 · x12

|x02||x12|

]
(13)

All previous cases mentioned were cutting off of a kernel with a fixed coupling ᾱs. Inclusion of the running coupling
has been calculated in [4] and [5]. Both schemes of introducing the running coupling into the LO BFKL kernel
are valid and were reconciled to be equivalent [6]. We choose the scheme of [4] as it was easier to impliment this
numerically. This prescription is however only for LO and in order to evaluate the modified kernel we used an
alternative method of implimenting the running coupling. This alternative ’minimum dipole’ method involves a direct
replacement of αs → αs(min(x2

01, x
2
12, x

2
02)). In various limits the Balitsky prescription does reduce to this minimum

dipole prescription, but there are some regimes where differences can be seen. These differences and specific behaviors
of the Balitsky prescription will be discussed more later in Sec: III A 3. In this paper we use the expression of the
QCD running coupling with a mass parameter µ to regulate the coupling at large (IR) dipoles.
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Sharp cutoff

Smooth cutoff (a la mass in the propagator)

But now how to combine with running coupling?

5

αs(x2) =
1

bln
[
Λ−2

(
1
x2 + µ2

)] (14)

Here b = 33−2nf

12π , nf is the number of active flavors and Λ = .246GeV . The µ parameter effectively freezes the
coupling at a large dipole sizes at αs,freeze = 1

bln[Λ−2µ2] . The values that we chose for the µ as well as the effect of
this parameter on the scattering amplitude and F2 are found in our results section. It is worthwile to note that we
have no factor attached to the term 1

x2 in the coupling as we are following [4]. Others [7] have a C2 term in the 1
x2

term which effectively fits Λ to the data, this will not be done in this analysis.

2. Modified Kernel

The modified kernel (10) can have the same theta function cuts placed on it as (11) and (12). Applying the mass
term in a smoother way as in (13) is not possible with the modified kernel as the opprotunity to apply the substitution
used before does not exist. However as there are already bessel functions in the modified kernel the mass parameter
may be applied directly inside these bessel functions, garnering a similar effect on the behavior of the scattering
amplitude. With this mass parameter the modified kernel becomes
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Application of the mass parameter in this manner again yields a cutoff that is not firm and has a suppression
which bleeds into dipole sizes which are below the scale 1

m2 . This small-dipole suppression slows the evolution greatly,
however as the slowdown in the evolution at small dipoles is from a scale in the large dipole regime which is placed
in the kernel by hand we regard this slowdown as artificial.

3. The Balitsky Prescription

The only implimentation of the running coupling that has comes from calculation that we consider is the one by
Balitsky (16) [4] (as stated early the Kovchegov-Weigert prescription [5] was not used for purely numerical reasons),
as such this kernel and its behavior is of special interest. We can impliment similar cuts to (11 - 13) in this running
coupling scheme (16). These cuts tame the coupling at large dipole sizes and provides some (but not complete)
independence to the IR regulation of the coupling. The entire kernel can be cut with step functions as in (17), but
a naive extention of (12 - 13) cannot be applied to (16) as this leads to regimes where the contribution of the kernel
cause the BK to become unstable.
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The Balitsky kernel (16) has several interesting properties which are difficult to see from an analytic perspective
but come out in the numerics. First it is clear that in various limits the Balitsky kernel reduces to the LO kernel with
a minimum dipole presription, however there are several regimes away from these limits there are contributions which
cause the Balitsky kernel to give a give a markedly slower evolution than the minimum dipole prescription. This is
because in regimes where the emitted dipoles are parallel there are enhancements to both kernels in seperate size
regimes such as in fig:2. In fig:2(a) where x01 splits into x02 and x12 which are oriented π with respect to each other
we have x01 > x02 >> x12 which leads to a greater contribution from the balitsky prescription than the minimum-size

For the actual fit use the simplest sharp cutoff

Need to regulate in the IR region. Non-perturbative problem, introduce 
phenomenological parameter. Calculations very sensitive to it.

Cutoff included both in the evolution kernel and in the GM initial condition.
Refit the inclusive HERA data for F2

This modification was included in the calculation [10] and it was shown that it has a non-

negligible effect on cross sections, especially on the values of the BD slope which controls

the t-dependence as a function of the scale Q2 + M2
V .

2.1 Dipole scattering amplitude from impact parameter dependent BK evolu-

tion

The dipole-proton scattering amplitude N(r,b;Y ) at high values of rapidity Y (or small

x) is found from the solution to the nonlinear integro-differential Balitsky-Kovchegov (BK)

evolution equation [12–14, 30]. The BK evolution equation can be represented in the fol-

lowing form:

∂Nx0x1

∂Y
=

∫

d2x2

2π
K(x01, x12, x02;αs,m) [Nx0x2 + Nx2x1 − Nx0x1 − Nx0x2Nx2x1 ] . (2.11)

In the above equation we used the shorthand notation for the arguments of the ampli-

tude Nxixj ≡ N(rij = xi − xj ,bij = 1
2(xi + xj);Y ) which depends on the two transverse

positions xi and xj and on the rapidity Y . The branching kernel K(x01, x12, x02;αs,m)

depends on the dipole sizes involved and contains all information about the splitting of the

dipoles. In addition, it depends on the running coupling αs. The way the strong coupling

runs will be specified later in this work. We have also indicated that the kernel depends

on the infra-red cutoff m which we impose in order to regulate large dipoles.

Eq. (2.11) is a differential equation in rapidity and hence suitable initial conditions need

to be specified at some initial value of rapidity Y = Y0. As in the previous work [31] we are

choosing to use the initial condition in the form of the Glauber - Mueller parametrization

with (most of) the parameters equivalent to those used in Ref. [10]

NGM(r, b;Y = ln 1/x) = 1 − exp

(

− π2

2Nc
r2xg(x, η2)T (b)

)

, (2.12)

with

T (b) =
1

8π
e

−b2

2BG . (2.13)

In formula (2.12) the function xg(x, η2) is the integrated gluon density function and

T (b) is the density profile of the target in transverse space with the extension set by the

parameter BG. The integrated gluon density in (2.12) was also taken from fits performed

in [10]. Scale parameter in the gluon density is set to be η2 = µ2
0 + C2

r2 with parameters µ0

and C = 2 set to obtain the best description of the data. The values of these parameters

are given in Table 1. We use (2.12) as the initial condition at Y0 = ln 1/x0, x0 = 10−2

and evolve the amplitude with the BK equation to obtain the solution at lower values of

x < x0. We also note that the initial condition (2.12) depends only on the absolute values

of the dipole size and impact parameter. A nontrivial dependence on the angle between

vectors r and b is not present in the initial condition, instead being dynamically generated

when the initial condition is evolved with the BK equation.

The BK equation was solved numerically by discretizing the scattering amplitude in

terms of variables (log10 r, log10 b, cos θ), where θ is the angle between the impact parameter

– 6 –

N(r, b, Y0 = ln 1/x0) =
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x) is found from the solution to the nonlinear integro-differential Balitsky-Kovchegov (BK)

evolution equation [12–14, 30]. The BK evolution equation can be represented in the fol-

lowing form:

∂Nx0x1

∂Y
=

∫

d2x2

2π
K(x01, x12, x02;αs,m) [Nx0x2 + Nx2x1 − Nx0x1 − Nx0x2Nx2x1 ] . (2.11)

In the above equation we used the shorthand notation for the arguments of the ampli-

tude Nxixj ≡ N(rij = xi − xj ,bij = 1
2(xi + xj);Y ) which depends on the two transverse

positions xi and xj and on the rapidity Y . The branching kernel K(x01, x12, x02;αs,m)

depends on the dipole sizes involved and contains all information about the splitting of the

dipoles. In addition, it depends on the running coupling αs. The way the strong coupling

runs will be specified later in this work. We have also indicated that the kernel depends

on the infra-red cutoff m which we impose in order to regulate large dipoles.

Eq. (2.11) is a differential equation in rapidity and hence suitable initial conditions need

to be specified at some initial value of rapidity Y = Y0. As in the previous work [31] we are

choosing to use the initial condition in the form of the Glauber - Mueller parametrization

with (most of) the parameters equivalent to those used in Ref. [10]

NGM(r, b;Y = ln 1/x) = 1 − exp

(

− π2

2Nc
r2xg(x, η2)T (b)

)

, (2.12)

with

T (b) =
1

8π
e

−b2

2BG . (2.13)

In formula (2.12) the function xg(x, η2) is the integrated gluon density function and

T (b) is the density profile of the target in transverse space with the extension set by the

parameter BG. The integrated gluon density in (2.12) was also taken from fits performed

in [10]. Scale parameter in the gluon density is set to be η2 = µ2
0 + C2

r2 with parameters µ0

and C = 2 set to obtain the best description of the data. The values of these parameters

are given in Table 1. We use (2.12) as the initial condition at Y0 = ln 1/x0, x0 = 10−2

and evolve the amplitude with the BK equation to obtain the solution at lower values of

x < x0. We also note that the initial condition (2.12) depends only on the absolute values

of the dipole size and impact parameter. A nontrivial dependence on the angle between

vectors r and b is not present in the initial condition, instead being dynamically generated

when the initial condition is evolved with the BK equation.

The BK equation was solved numerically by discretizing the scattering amplitude in

terms of variables (log10 r, log10 b, cos θ), where θ is the angle between the impact parameter

– 6 –

BG = 4 GeV�2 hb2i = 2BG

29
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9
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•Given current uncertainties about J/psi production mechanisms, is J/psi production 
(e.g. R_{pA} at the LHC) a useful test of the CGC? Or is it too swamped with 
theoretical uncertainties? 

•The QCD factorization + NRQCD + CGC description of J/psi production seems 
promising in a number of different channels. 

•Can these newer schemes describe the variety of J/psi channels / properties? 

•Are there any additional measurements (say, in pA collisions) which could help add 
more discriminating power to J/psi production mechanisms?

CGC	/	Small-x:		
Is	RpA for	J/psi	
Meaningful?

RJ/ψ
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•In current measurements (e.g. diffraction), do we have a clear favoring of “leading-
twist shadowing” or other nuclear effects versus saturation? 

•Are there measurements where we could / have constrain(ed) the small-x leading-
twist behavior at high Q^2 and then go to lower Q^2 to try to enhance higher-twist 
effects? This is a proposed measurement at the EIC; what do we / could we know / 
learn about it now?

• What kind of predictions do leading-twist shadowing models give for (de)correlation 
measurements, e.g. back-to-back dijets? Are there useful comparisons to be made 
with saturation calculations or energy loss?
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Figure 3.12: Plots of the ratio from Eq. (3.10) for e+p and e+Au scattering from [184], demon-
strating the sensitivity of nuclear structure function F

L

to the higher-twist e↵ects. The plots go
down to x = 10�5 as the smallest-x reachable at an EIC (see Fig. 3.1).

plot their relative contribution to F
L

defined
by

F
L

� F
L

(leading twist)

F
L

(3.10)

in Fig. 3.12 as a function of x and
Q2 as expected in the framework of the
saturation-inspired Golec-Biernat–Wustho↵
(GBW) model [185, 166], which has been
quite successful in describing the HERA e+p
data. The left panel of Fig. 3.12 is for e+p
scattering, while the right one is for e+Au.
Note that the ratio is negative in both plots,
indicating that higher twists tend to decrease
the structure function. It is also clear from
both plots that the e↵ect of higher twists
becomes stronger at smaller-x, as expected
from Eq. (3.9). Comparing the two panels
in Fig. 3.12, we see that the higher twist
e↵ects are also stronger in e+Au scatter-
ing due to nuclear enhancement. Fig. 3.12
demonstrates that the structure function F

L

is rather sensitive to parton saturation. Ex-
perimentally, it is impossible to single out
the higher-twist contribution if the Q2 of in-
terest is too high, making it di�cult to plot
the ratio from Eq. (3.10) to verify the predic-

tion in Fig. 3.12. At lower Q2, experimental
separation of the leading twist contribution
from the higher-twist terms may also become
a problem. Theoretical work is currently un-
der way to enable the separation of higher
twist terms in F

L

(and F
2

), which is likely
to make the ratio (3.10) an observable which
could be measured at an EIC.

Di↵ractive Physics

The phenomenon of di↵raction is familiar to
us from many areas of physics and is gen-
erally understood to arise from the construc-
tive or destructive interference of waves. Per-
haps the best analogy of di↵raction in high-
energy QCD comes from optics: imagine a
standard example of a plane monochromatic
wave with the wave number k incident on
a circular screen of radius R (an obstacle).
The di↵ractive pattern of the light intensity
on a plane screen behind the circular obsta-
cle is shown in the left panel of Fig. 3.13 as
a function of the deflection angle ✓, and fea-
tures the well-known di↵ractive maxima and
minima. The positions of the di↵ractive min-
ima are related to the size of the obstacle by
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CGC	/	Small-x
vs	

Leading-Twist

Nuclear diffractive parton distributions 
• Leading twist nuclear shadowing model for inclusive diffraction in "*A:

8

Author's personal copy

L. Frankfurt et al. / Physics Reports 512 (2012) 255–393 335

a b c

Fig. 68. The multiple scattering series for the � ⇤A ! XA scattering amplitude. Graphs a, b, c correspond to the interaction with one, two, and three
nucleons of the nuclear target, respectively. Graph a is the impulse approximation; graphs b and c contribute to the shadowing correction.

Note thatwe expressed the longitudinalmomentum transfer�� ⇤X in terms of xP,�� ⇤X = xPmN . Using the QCD factorization
theorem for diffraction (163) in the right-hand and left-hand sides of Eq. (168), we obtain the expression for the nuclear
diffractive PDFs f D(3)

j/A :

�f D(3)
j/A (�,Q 2, xP) = 4⇡A2�f D(4)

j/N (�,Q 2, xP, tmin)

Z
d2b

����

Z 1

�1
dzeixPmNze� A

2 (1�i⌘)�
j
soft(x,Q

2)
R 1
z dz0⇢A(b,z0)⇢A(b, z)

����
2

. (169)

Finally, assuming the exponential t dependence of f D(4)
j/N , i.e., using Eq. (59), we obtain our final expression for the nuclear

diffraction parton distribution �f D(3)
j/A [26,210]:

�f D(3)
j/A (�,Q 2, xP) = 4⇡A2Bdiff�f D(3)

j/N (�,Q 2, xP)

Z
d2b

����

Z 1

�1
dzeixPmNze� A

2 (1�i⌘)�
j
soft(x,Q

2)
R 1
z dz0⇢A(b,z0)⇢A(b, z)

����
2

. (170)

The structure of the answer resembles the case of the diffractive productions of vector mesons (after the generic diffractive
state X is replaced by a single vector meson), see e.g., Ref. [80].

Eq. (170) should be compared to Eq. (64): the both equations are derived in the color fluctuation approximation
characterized by the cross section �

j
soft(x,Q

2) that determines the strength of the multiple rescatterings. Note also that
the nuclear shadowing correction to �f D(3)

j/A given by Eq. (170) corresponds to the diffractive unitary cut in the language of
the AGK cutting rules, see Eq. (24) and graph a in Fig. 8.

The physics interpretation of Eq. (170) is rather straightforward: the diffractive scattering takes place on any ofAnucleons
of the target at point (Eb, z); the produced diffractive state gets absorbed on the way out with the probability amplitude
e� A

2 (1�i⌘)�
j
soft(x,Q

2)
R 1
z dz0⇢A(b,z0).

In the limit of very small xP, the effect of the finite coherent length, i.e., the eixPmNz factor, can be neglected and Eq. (170)
can be presented in the following simplified form:

�f D(3)
j/A (�,Q 2, xP) ⇡ 16⇡Bdiff�f D(3)

j/N (�,Q 2, xP)

Z
d2Eb

�����
1 � e� A

2 (1�i⌘)�
j
soft(x,Q

2)TA(b)

(1 � i⌘)�
j
soft(x,Q 2)

�����

2

. (171)

In Eq. (170), we neglected the possible dependence of �
j
soft(x,Q

2) on � (the dependence on the diffractive mass MX ).
Since the total probability of diffraction changes rather weakly as one varies the rescattering cross section, see e.g., Ref. [34],
this seems to be a reasonable first approximation. At the same time, in the region of small � and small x that corresponds to
the triple Pomeron kinematics for the soft inelastic diffraction, one expects a suppression of diffraction as compared to the
color fluctuation approximation used in Eq. (170). Indeed, Eq. (170) evaluated atQ 2 = Q 2

0 = 4 GeV2 essentially corresponds
to treating diffraction as a superposition of elastic scattering of different components of the virtual photon wave function.
This is a reasonable approximation for the configurations with the masses comparable to Q 2. In the � ⌧ 1 limit (which
corresponds to M2

X � Q 2), one approaches the limit analogous to the soft triple Pomeron limit, in which case diffraction
off nuclei is strongly suppressed compared to elastic scattering, see, e.g., Refs. [211,212]. Hence, we somewhat overestimate
diffraction for small � and relatively small Q 2

0 scales. At larger Q 2, diffraction at small � is dominated by the QCD evolution
from � � 0.1 at Q 2

0 and, hence, the accuracy of our approximation improves. Thus, in our numerical studies, we neglect the
effect of the potential small-� suppression that we just discussed.

One can immediately see from Eq. (170) that the Regge factorization, i.e., the factorization of f D(3)
j/A (�,Q 2, xP) into the

product of the Pomeron flux factor fP(xP) and the PDFs of the Pomeron fj(�,Q 2), see Eq. (88), is not valid for the nuclear
diffractive parton distributions, even if it approximately holds for the nucleon case. At fixed xP, the right-hand side of
Eq. (170) depends not only on� , but also on Bjorken x since the screening factor is given by the exponential factor containing
�

j
soft(x,Q

2)which is a function of x. In addition, the right-hand side of Eq. (170) depends on the atomic mass number A since

�f

D(3)

j/A

(x, µ2

, x

P

) = 16⇡fD(4)

j/N

(x, µ2

, x

P

, t = 0)

Z
d

2

b

 
1� e

� 1

2

�

j
soft

(x)TA(b)

�

j

soft

(x)

!
2

• LT shadowing suppresses diffraction on nuclei → slows down approach to saturation :

— + —
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proton

CGC because the virtual photon in forward lepton scattering probes matter coherently over
a characteristic length proportional to 1/x, which can exceed the diameter of a Lorentz-
contracted nucleus. Then, all gluons at the same impact parameter of the nucleus, enhanced
by the nuclear diameter proportional to A1/3 with the atomic weight A, contribute to the
probed density, reaching saturation at far lower energies than would be needed in electron-
proton collisions. While HERA, RHIC and the LHC have only found hints of saturated
gluonic matter, the EIC would be in a position to seal the case, completing the process
started at those facilities.
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Figure 1.6: Left: The ratio of di↵ractive over total cross section for DIS on gold normalized
to DIS on proton plotted for di↵erent values, M2

X

, the mass square of hadrons produced in
the collisions for models assuming saturation and non-saturation. The grey bars are estimated
systematic uncertainties. Right: The ratio of coherent di↵ractive cross section in e-Au to
e-p collisions normalized by A4/3 plotted as a function of Q2, plotted for saturation and non-
saturation models. The 1/Q is e↵ectively the initial size of the quark-antiquark systems (� and
J/ ) produced in the medium.

Figure 1.6 illustrates some of the dramatic predicted e↵ects of gluon density saturation in
electron-nucleus vs. electron-proton collisions at an EIC. The left frame considers coherent
di↵ractive processes, defined to include all events in which the beam nucleus remains intact
and there is a rapidity gap containing no produced particles. As shown in the figure, gluon
saturation greatly enhances the fraction of the total cross section accounted for by such
di↵ractive events. An early measurement of coherent di↵raction in e+A collisions at the
EIC would provide the first unambiguous evidence for gluon saturation.

Figure 1.6 (Right) shows that gluon saturation is predicted to suppress vector meson
production in e+A relative to e+p collisions at the EIC. The vector mesons result from
quark-antiquark pair fluctuations of the virtual photon, which hadronize upon exchange of
gluons with the beam proton or nucleus. The magnitude of the suppression depends on
the size (or color dipole moment) of the quark-antiquark pair, being significantly larger for
produced � (red points) than for J/ (blue) mesons. An EIC measurement of the processes
in Fig. 1.6 (Right) would provide a powerful probe to explore the properties of the saturated
gluon matter.

8
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Probability of gluon diffraction < 50%



•What is the best way to take advantage of the apparent duality between the 
production of wide-angle radiation in jet physics and small-x evolution? 

•Can this duality give some guidance for extending small-x calculations to NNLO or 
provide other useful “technology”? 

•Could this be another related way to test small-x physics?

CGC	/	Small-x
Duality	to	Jets?

Duff Neil 
Finding small-x physics in small-x jets
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•Are we in a position to robustly describe the polarization state of the CGC in the future?
•Linearly polarized gluons (small-x vs Q2 evolution…?)
•Longitudinally polarized gluons
•Others: Gluon Sivers function, etc…?

•Can we construct of a complete small-x description of the operators / distributions 
relevant for the proton spin puzzle? (An “asymptotic solution”?)

• What are the evolution equations describing the Jaffe-Manohar OAM?  Are any other 
non-”staple” gauge links important to study?

CGC	/	Small-x
Duality	to	Jets?
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FIG. 9. Plot of S[x
min

]
G

(Q2) vs. x
min

at Q

2 = 10GeV2. The solid curve is from DSSV14 [43]. The dot-dashed, long-dashed,
and short-dashed curves are from various small-x modifications of �G(x,Q2) at x0 = 0.08, 0.05, 0.001, respectively, using our
gluon helicity intercept (see the text for details).

for di↵erent x0 values. The results are shown in Fig. 9 for Q2 = 10GeV2 and ↵
s

⇡ 0.25, in which case ↵G

h

⇡ 0.65. We
see that the small-x evolution of �G(x,Q2) gives about a 5÷ 10% increase to the gluon spin, depending on where in
x the e↵ects set in and on the parameterization of the gluon helicity PDF at higher x. Again we emphasize that the
first principles results of this work (along with that for the quark [9, 38, 39]) can be included in future extractions
of helicity PDFs, especially once the present large-N

c

approximation is relaxed, which will provide strong constraints
on the small-x behavior of the quark and gluon spin.

VII. CONCLUSIONS

In this paper, we have shown that the dipole gluon helicity distribution (40) and the Weizsäcker-Williams gluon
helicity distribution (54) at small x are governed by polarized dipole operators (37) and (52), respectively. These
operators are di↵erent from each other and from the polarized dipole amplitude (8) which governs the quark helicity
distribution at small x. For the case of the dipole gluon helicity distribution, we have derived double-logarithmic small-
x evolution equations given by Eqs. (88) in the large-N

c

limit. These gluon helicity evolution equations mix with the
small-x quark helicity evolution (13), but ultimately result in a gluon helicity intercept (123) which is smaller than
the quark helicity intercept (14) by about 20%. One may speculate that the fact that ↵G

h

< ↵q

h

is partially responsible
for the di�culty in experimentally detecting a non-zero signal for �G at small-x.

The di↵erence between the quark and gluon helicity intercepts mathematically results from the fact that the small-x
evolution for quark and gluon helicity is given by a coupled set of equations, Eqs. (12) and (88). This is similar to
the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP) evolution equations [73–75] which mix the evolution of the
(flavor-singlet) quark and gluon distributions. Due to this mixing, the Q2 dependence of quark and gluon PDFs is
di↵erent from each other. The unpolarized small-x evolution is di↵erent in this respect: at LLA the BFKL evolution
is entirely gluon-driven. The quark distribution is obtained from this evolution by having a gluon at the end of BFKL
ladder emit a qq̄ pair. This results in x-dependence of the (flavor-singlet) unpolarized quark distribution at small x
being practically the same as that for the gluons. In this paper we observed that for helicity TMDs and PDFs the
small-x evolution mixes the contributions of quarks and gluons, resulting in a di↵erent x-dependence of quark and
gluon helicity PDFs. This is indeed di↵erent from the x-dependence of unpolarized quark and gluon PDFs resulting
from BFKL evolution.

On a technical level, this reduction of the gluon helicity as compared to the quark helicity can be attributed
to the fact that the dipole gluon helicity evolution receives contributions from the radiation of virtual unpolarized
gluons, but not real unpolarized gluons (the bottom two diagrams of Fig. 5). The physical reason for this stems
from the definition (23) of what gluon helicity really means: a circular flow of the gluon field-strength. Maintaining
this circular orientation during the small-x evolution requires that the angular correlations between the fields be
preserved, but in the DLA limit, the radiation of unpolarized gluons is isotropic. The resulting angular decorrelation
causes the real gluon emission term to drop out from the gluon helicity evolution equations (90), leaving only the
virtual emissions. Consequently, this leads to a depletion of the gluon helicity compared to the quark helicity: the
uncorrelated radiation of soft gluons causes the gluon distribution to “forget” about polarized interactions which take
place later in the cascade. Only cascades which develop without such uncorrelated radiation contribute to the gluon


